字体:大 中 小    
		护眼
    	关灯
	上一页
	目录
	下一页
	
		  		对火星轨道变化问题的最后解释  (第4/5页)
ionswesetinHalley‘smethodis15,buttheyneverreachedthemaximuminanyofourintegrations.    Theintervalofthedataoutputis200000d(547yr)forthecalculationsofallnineplanets(N±1,2,3),andabout8000000d(21903yr)fortheintegrationoftheouterfiveplanets(F±).    Althoughnooutputfilteringwasdonewhenthenumericalintegrationswereinprocess,weappliedalow-passfiltertotheraworbitaldataafterwehadcompletedallthecalculations.SeeSection4.1formoredetail.    2.4Errorestimation    2.4.1Relativeerrorsintotalenergyandangularmomentum    Accordingtooneofthebasicpropertiesofsymplecticintegrators,whichconservethephysicallyconservativequantitieswell(totalorbitalenergyandangularmomentum),ourlong-termnumericalintegrationsseemtohavebeenperformedwithverysmallerrors.Theaveragedrelativeerrorsoftotalenergy(109)andoftotalangularmomentum(1011)haveremainednearlyconstantthroughouttheintegrationperiod(Fig.1).Thespecialstartupprocedure,warmstart,wouldhavereducedtheaveragedrelativeerrorintotalenergybyaboutoneorderofmagnitudeormore.    RelativenumericalerrorofthetotalangularmomentumδA/A0andthetotalenergyδE/E0inournumericalintegrationsN±1,2,3,whereδEandδAaretheabsolutechangeofthetotalenergyandtotalangularmomentum,respectively,andE0andA0aretheirinitialvalues.ThehorizontalunitisGyr.    Notethatdifferentoperatingsystems,differentmathematicallibraries,anddifferenthardwarearchitecturesresultindifferentnumericalerrors,throughthevariationsinround-offerrorhandlingandnumericalalgorithms.IntheupperpanelofFig.1,wecanrecognizethissituationinthesecularnumericalerrorinthetotalangularmomentum,whichshouldberigorouslypreserveduptomachine-εprecision.    2.4.2Errorinplanetarylongitudes    SincethesymplecticmapspreservetotalenergyandtotalangularmomentumofN-bodydynamicalsystemsinherentlywell,thedegreeoftheirpreservationmaynotbeagoodmeasureoftheaccuracyofnumericalintegrations,especiallyasameasureofthepositionalerrorofplanets,i.e.theerrorinplanetarylongitudes.Toestimatethenumericalerrorintheplanetarylongitudes,weperformedthefollowingprocedures.Wecomparedtheresultofourmainlong-termintegrationswithsometestintegrations,whichspanmuchshorterperiodsbutwithmuchhigheraccuracythanthemainintegrations.Forthispurpose,weperformedamuchmoreaccurateintegrationwithastepsizeof0.125d(1/64ofthemainintegrations)spanning3×105yr,startingwiththesameinitialconditionsasintheN1integration.Weconsiderthatthistestintegrationprovidesuswitha‘pseudo-true’solutionofplanetaryorbitalevolution.Next,wecomparethetestintegrationwiththemainintegration,N1.Fortheperiodof3×105yr,weseeadifferenceinmeananomaliesoftheEarthbetweenthetwointegrationsof0.52°(inthecaseoftheN1integration).Thisdifferencecanbeextrapolatedtothevalue8700°,about25rotationsofEarthafter5Gyr,sincetheerroroflongitudesincreaseslinearlywithtimeinthesymplecti
		
				
上一页
目录
下一页