字体:大 中 小
护眼
关灯
上一章
目录
下一页
第106章 增乘开平法 (第1/3页)
农家院内,趁着时机,陈增文向老祖陈古延卖弄到: “老祖,孙儿最近又研究出了一种新的开方法,还请老祖赐教。” “新的开方法?增文速速到来。” 老祖陈古延闻言,立马催促道。 他此次前来的目的不就是这个嘛,能看到新的方法,他高兴还来不及呢。 见他如此好奇,陈增文也不迟疑,直接将算筹一揽,便开始演示起来。 “所谓开方即求方幂之一面也。 《九章算术》有言:置积为实。借一算,步之,超一等。议所得,以一乘所借一算为法,而以除…… 孙儿则以商数乘下发递增求之。 商第一位。上商得数以乘下发为乘方。命上商除实。上商得数以乘下发入乘方。一退为廉,下法再退。 商第二位。商得数以乘下发为隅。命上商除实讫。以上商乘下法入隅,皆名曰廉。一退,下法再退,以求第三位商数。 商第三位。用法如第二位求之。” “以七万一千八百二十四为例。 第一步:估商。估商为二,置百位。 第二步:更新廉。上商二乘下法一,得数二,置为廉。 第三步:更新实…… 此时新实不为零,则表明要继续开方。 第四步:再次更新廉…… 第五步:更新廉与下法…… 第六步:以当前的‘下法’,‘廉’和‘实’重复上述步骤,以求得下一位的商,直至实为零为止。” 一边讲解,陈增文一边用算筹计算。 如此再继续计算了一轮,等到第三轮的时候,经过步骤三之后,算筹上显示新实为零。 这时,哪怕老先生还没出答桉,边上的陈长智已经悄然读出了算筹上的数字,“二百六十八!” 语毕,他又悄然在心中默算了一番,发现二百六十澳平方正好是七万一千八百二十四。和之前的一模一样。 但是对方用的方法可比《九章算术》中描写的简单多了。 至少,他是这么觉得。 而就在这时,老先生又道:“之前老祖所的‘勾六股七’,其实也可以用此法求解,勾六股七则弦方为八十五。如要求弦,则需将八十五进行开方。 九方为八十一,十方为一百,则估商为九,置个位。 此时廉为……” 又经过大约一盏茶的时间,计算告一段落后,陈长智又读出了算筹上的数字:“九二一九五四四。” 陈增文闻言,纠正道:“个位为九,则应当是九又两分一厘九毫五丝四忽四微。” “对对对!应当是九又两分一厘九毫五丝四忽四微!” 陈长智连连点头。 点头的瞬间,他注意到此时的新实还不为零,刚刚看到计算全过程的他自然明白,这代表着还可以继续计算下去。 不过因为现在的数字已经很了,位数已经够多了,所以暂时没有再计算下去的必要。 但他可以肯定,如果可以的话,老先生一之内就能将这个位数继续拓展到几百上千位。 如果这个数字真的没有劲头的话。 察觉到这些的同时,他又注意到。此次虽然还刚才得出了一模一样的结果,都是九又那么多丝,但是老先生所用的时间却只有刚刚的一半左右。 就算排除掉老先生对自己的方法更为熟悉,这也足以明新方法的优越性了。 更重要的是,这种新方法实在是太简单了。 只要记住那六个步骤,接下来想都不用想,直接就可以将任意数字进行开方。 想开多少位,就开多少位! 如此简便的方法,直让陈长智心生敬佩。 与此同时,前来考察的陈古延也明白了这些,虽然这个方法还不如他现在所用的,但也已经很接近了。 甚至可以,他现在所用的是这种方法的修订版本。 想及此处,陈古延激动的问道:“此法可有名称?” “已有!孙儿叫它‘增乘开平法’。” “增乘开平法?好名字,好方法!增文可真是让老祖喜出望外呐!” 陈古延激动不已。 来之前,他还对侄孙青玄所的那一套抱有怀疑,但是此时此刻,他心中已然彻底相信了,相信了凡人真的能开创出算经来。 就拿他这个侄孙来,对方现在的水平足以当他的同道了! 虽然只是算术上的,但这已经很不起了。 要知道他们莲湖岛陈氏一百多位修士,十来位阵法师,也只有老祖陈存诚和二十五弟陈古民能做他的同道。不管是阵法还是算术,都是如此。 如今平白多了一个,他自然喜不自胜。 有了这位侄孙,如果再加上其他几人,那他
上一章
目录
下一页